TimesEV
TimesEV
TimesEV
TimesEV
TimesEV
TimesEV
More
    HomeEV NewsWhen will we Conquer Range Anxiety in Electric Vehicles?

    When will we Conquer Range Anxiety in Electric Vehicles?

    Imagine this common scenario: You merge onto the interstate in your car for a quick trip, then encounter a serious automobile accident that stops traffic cold. You have 20 miles to go until empty and no way to exit for gasoline.

    That worrisome feeling is called range anxiety and it’s the major barrier to larger scale electric vehicle adoption.

    Internal combustion engine cars provide plenty of range, refueling possibilities are ubiquitous and it takes no time to refuel. For electric vehicles, range is much more limited, recharging takes longer and, consequently, range anxiety is more frequent.

    While range anxiety is still a barrier, the good news is innovators are making important progress toward a world where electric vehicle batteries deliver a better travel experience, enabling you to turn the key and go as far as you want, whenever you want.

    We talked with John Johnson of the STMicroelectronics automotive systems marketing team to learn about the latest trends and challenges in electric vehicle battery design.

    It’s fun and instructive to look at the history of various technologies, and that’s certainly true of electric vehicles.

    The first rechargeable battery was developed in France in 1859 and early vehicles used batteries to operate. Several innovations quickly changed the landscape: The discovery of oil along with development of the internal combustion engine and improved roads made longer trips possible. Batteries could no longer meet the need.

    Even though electric cars outsold internal combustion engine-powered cars initially, internal combustion vehicles quickly passed them by.

    Now, electric vehicles are making serious inroads to overcome range anxiety.

    “Battery range is getting better all the time. That’s not just because battery packs are growing in capacity but also because battery management is getting better,” Johnson said.

    To make the most of your design and reduce range anxiety, Johnson recommends evaluating these key performance indicators:

    Battery Basics

    Key Performance Indicators (KPIs)

    PARAMETER UNIT SIGNIFICANCE TO END-PRODUCT
    Energy Density LW-h/l compactness, range (vehicle), operating time
    Specific Power W/kg weight, range
    Charge Time hrs Utility (if rechargeable is required)
    Service Life Cycles, Years Reliability, Long term cost
    Cost $ Acquisition Cost, replacement cost
    PARAMETER UNIT SIGNIFICANCETO THE CONSUMER
    State of charge (SOC) % How far can I go?
    State of Health (SOH) % When will I need to replace the battery?

    Whether you’re designing a forklift, a drone or an electric vehicle, pay attention to these considerations to get your battery design right from the beginning.

    Johnson says he’s optimistic about the future of electric vehicles and innovation to conquer range anxiety.

    “When hybrid vehicles came out, the batteries were afterthoughts. Everything was kind of clunky. In today’s electric vehicles, especially from startups, we see slick skateboard-type designs that you could bolt any chassis onto and make a car or a delivery vehicle. It’s going to be really impressive to see the types of vehicles coming out on the market,” he said.

    Authored Article By: Jason Struble

    Related Post

    Most Popular

    Best Picks

    Aimil Ltd.: Setting the Benchmark for Instrumentation Solutions at Auto EV India 2023

    Aimil Ltd., an ISO 9001:2015 certified company with a heritage tracing back to 1932, holds a prominent position as a leading provider of cutting-edge...

    Electrify Your Future: A Thriving Career in the E-Mobility...

    In an era where sustainability and innovation reign supreme, the E-Mobility sector has emerged as the driving force behind a transformative shift in the...

    X0115ML, the smallest SCR now supports a surge peak...

    Author: STMicroelectronics The X0115ML is our first compact silicon control rectifier (SCR) for ground fault circuit interrupters (GFCIs) and arc-fault circuit interrupters (AFCIs) that can withstand a...

    Exploring the Future of Electronics: Unveiling the Power of...

    In a recent interview conducted by technology journalist Himanshu Vaibhav of eletimes.com and timesev.com, Dr. John W. Mitchell, President & CEO of IPC, discussed...

    Navigating Defense Challenges: Insights from Chris Peters, USPAE Founding...

    In a recent interview conducted by technology journalist Himanshu Vaibhav from eletimes.com and timesev.com, Mr. Chris Peters, the Founding Executive Director of the U.S....

    Driving Innovation: Cientra’s Leadership in Automotive and Telecom Technology...

    Cientra stands as a prominent leader in the realm of technology solutions. Consistently, they innovate and advance their proprietary technologies to cater to the...

    STM32Wx microcontrollers is an ideal fit for RF designers...

    The STM32Wx microcontrollers enable wireless connectivity supporting the sub-GHz band and the 2.4 GHz frequency range. STM32 Wireless MCUs are highly integrated and reliable...

    Veridify, Overcoming the challenges of OT security in building...

    Despite popular belief, it is possible to secure legacy embedded systems properly, even if they lack today’s iron-clad cryptographic capabilities, the latest protections, or...

    Tsuyo’s Vision for Future Manufacturing: Incorporating Emerging Technologies and...

    Tsuyo Manufacturing is deeply committed to offering highly reliable, robust, and durable products designed to withstand a wide range of exposure and service conditions...

    Must Read