More
    HomeEV BusinessHow Vehicle Electrification is Evolving Voltage Board Nets

    How Vehicle Electrification is Evolving Voltage Board Nets

    The need for electrical energy inside the car is growing with the proliferation of automated driving functions and the popularity of comfort, convenience and infotainment features. Today’s vehicles have a growing number of sensors, actuators and electronic control modules (ECUs) that read sensors and control actuators. Simultaneously, the growing demand for hybrid and electric vehicles makes power efficiency an important design goal. After all, improved efficiency increases vehicle drive range.

    To boost power efficiency, automotive design engineers are implementing higher-voltage board nets in cars. The use of higher-voltage board nets not only helps reduce overall vehicle weight (for example, through reduced harness weight) but also eliminates the need for voltage-level conversion because the higher voltage can directly power the actuator.

    Although it may seem that a single high-voltage board net is best, in reality, the varying power requirements of the different actuators and ECUs are leading automotive system designers to implement two to three voltage board nets in vehicles.

    In this article, we’ll discuss the voltage board nets that automotive designers are considering in next-generation vehicle architecture. We will also connect you with product families and resources to help you address various technical challenges related to the different board nets.

    Figure 1 shows the different voltage board-net possibilities in vehicles based on vehicle type.

    Powering control modules with 12-V board nets

    A traditional 12-V board net has a wide voltage range, as prescribed in the International Organization for Standardization (ISO) 7637-2 and ISO 16750-2 standards. While these requirements are unlikely to change for combustion engine-based cars, the use of 12 V in hybrid and electric vehicles could result in a lower maximum voltage, especially if the 12-V bus has no alternator – that is, if all the power needed on the 12-V board net is derived from the high-efficiency DC/DC converter that is used to step down from high voltage to 12 V. In this case, lower-input voltage regulators could be used to implement power-management solutions in ECUs.

    Designers have the flexibility to solve different technical challenges in control modules powered by 12-V power board net with a range of automotive-qualified products such as power managementamplifierstransceiversmotor drivers and smart power switches.

    Addressing challenges in 48-V board nets

    The 48-V board net is typically used to power loads that require higher power. The specific loads that are powered by 48 V depends on the vehicle type. Regardless of the type of module, control modules connected to the 48 V board net will need power management devices that are efficient, have high power density and are able to withstand operating voltage requirements specified in ISO 21780. The modules also need functional isolation if the ECU is also connected to a 12-V board net. Efficient multiphase 48-V gate drivers with functional safety to drive the 48-V actuators such as the belt starter generator or HVAC AC compressor module. The need for functional safety drives the need for additional diagnostic circuits such as load-current sensing. The deployment of a 48-V power board net would also require efficient, accurate state-of-charge and state-of-health management in 48-V battery-management systems.

    To boost efficiency, increase power density and achieve functional safety in 48 V board net systems, designers can use products such as buck regulatorsthree-phase gate drivers and battery management systems along with the broad portfolio of current and voltage sense amplifiers.

    Maximizing the high-voltage board net

    Electric vehicles have battery systems that generate much higher voltage. High power loads such as the traction inverter and the HVAC AC compressor module are directly powered from the high voltage board net. This implies that the power stages that are used to actuate these high voltage loads need to withstand high operating voltages and require high common-mode transient immunity (CMTI). Furthermore, compact solution implementations need high power density gate drivers and power stages. The use of multiple power board nets also requires isolation within the control module between the low- and high-voltage domains to ensure proper operation. The use of high voltage could require designs that not only meet electrical safety requirements but also satisfy functional-safety-requirements. The latter requirements necessitate the implementation of diagnostic features, resulting in additional current-, voltage- and temperature-sensing solution in these systems. Moreover, efficient high voltage battery-management systems that have accurate state-of-charge and state-of-health management and maintain better cell uniformity are also needed.

    High voltage gate driversbattery management systemspower and signal isolators, and high-speed amplifiers are among a broad portfolio of products that designers can use to optimize and meet the challenges of efficiency, power density, functional safety and reliability in high voltage control modules.

    Designing  for low to high voltage

    Automotive design engineers can choose from a wide range of analog and embedded semiconductor devices for 12-V, 48-V and high voltage board nets. These products offer the flexibility to design vehicle architectures with efficient ECUs and help achieve your power density, reliability and functional safety design goals.

    Courtsey: Texas Instruments

    Related Post

    Most Popular

    Best Picks

    Raptee Sets the Stage for Two-Wheeler EVs in India

    Raptee is a full-stack two-wheeler EV startup with their flagship product highly tech-enabled and IoT-centred. The team began operations out of Chennai in 2019...

    Delta’s EV Charging Solutions Give Rise to Innovation with...

    Delta Electronics is a truly global brand operational across Asia, Europe, America, Australia, and New Zealand. The team is highly competitive and works towards...

    STM32 Summit: 3 important embedded systems trends for 2024

    Author: STMicroelectronics Where are embedded systems heading in 2024, and how can makers stay ahead of the curve? Few people used to ask these questions a...

    L99LDLH32 – 32-channel LED driver enabling the technology revolution...

    Author: Bipin Pande, Technical Marketing Manager, STMicroelectronics Pvt Ltd STMicroelectronics’ L99LDLH32 linear current regulator delivers a convenient, integrated solution for dynamic automotive lighting controlled using CAN-FD...

    NFC in Healthcare

    Author: Amit Sethi, Technical Marketing Manager, STMicroelectronics Pvt Ltd NFC, a short-range wireless communication technology, enables data exchange between devices when they are brought into...

    Page EEPROM in hearing aid or why smart medical...

    Author : STMicroelectronics Medical devices aren’t immune to the latest machine learning opportunities, but the existing components don’t always satisfy the new engineering needs, which...

    STMicroelectronics Leads in Developing Industry-First and Innovative Fast Wireless...

    STMicroelectronics is a highly renowned Semiconductor company that develops competitive products in segments of Smart Mobility, Power & Energy, and Cloud-connected Autonomous systems. It...

    STM32WBA, 1st wireless Cortex-M33 for more powerful and more...

    Author: STMicroelectronics Update, December 21, 2023 The STM32WBA52xx are now available in a QFN32 package measuring only 5 mm x 5 mm as opposed to the...

    2024 Insights: Dr. Abhilasha Gaur on Skilling’s Impact in...

    In an exclusive interview, Dr Abhilasha Gaur, COO of the Electronics Sector Skills Council of India (ESSCI), sheds light on how skilling processes will...

    Must Read