More
    HomeEV NewsARCI Establishes a Pilot Plant to Test a Class of Inexpensive Magnets...

    ARCI Establishes a Pilot Plant to Test a Class of Inexpensive Magnets that might make EVs more cheap.

    Research and development efforts to create more effective and inexpensive solutions are expanding along with the electrification megatrend. The researchers at the Center for Automotive Energy. Improved heavy, low-cost, high Neodymium Iron Boron (Nd-Fe-B) magnets have been created at the International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI), an independent Research and Development Center of the Department of Science and Technology (DST), Government of India. These magnets are in high demand for electric vehicles (EV) and may help make them more affordable.

    In accordance with the Government of India’s Atmanirbhar Bharat mission, ARCI is establishing a pilot plant to produce near-net-shaped Nd-Fe-B magnets through a significant initiative financed by the Science and Engineering Research Board (SERB). For the magnets produced at the pilot plant, the aforementioned technique will be investigated.
    The novel approach might potentially be utilized to commercially produce Nd-Fe-B magnets in India, decreasing the need for imports to provide the primary needs of the car industry.
    Today’s EVs employ BLDC motors. Brushless DC (BLDC) motors made of rare earth Neodymium Iron Boron (Nd-Fe-B) magnets are used in more than 90% of electric vehicles.

    Due to its outstanding mix of magnetic properties, the Nd-Fe-B magnet has been one of the most sought-after permanent magnetic materials for various applications since it was discovered by the Japanese scientist and entrepreneur Masato Sagawa in 1984.
    Nd-Fe-B magnets used in electric vehicles (EVs) must have a high resistance to demagnetization since they run at high temperatures between 150 and 200 oC. Pure Nd-Fe-B magnets lack this ability. As a result, an alloy containing dysprosium (Dy) metal is added to increase demagnetization resistance. Researchers from all over the world are working to improve Nd-Fe-B magnets’ coercivity (resistance to demagnetization) without using expensive Dy.

    The scientific community has chosen to enrich the space between the Nd-Fe-B magnet’s grains with “non-magnetic” materials using the appropriate heat treatments in order to increase coercivity (grain boundary diffusion).

    The grain boundary diffusion process (GBDP) was used by the ARCI scientists to increase the coercivity of Nd-Fe-B melt-spun ribbons containing Niobium (Nb) by employing a low melting point alloy of Nd70Cu30 as the source for the “non-magnetic” element. They have noted that the precipitation of Nb limits grain development during grain boundary diffusion, allowing copper (Cu) to be enriched at the grain boundaries and enhancing the Nd-Fe-B powders’ resistance to demagnetization.

    This study’s coercivity result of 1 T at 150 oC, which is necessary for automotive applications, was published in Materials Research Letter. It may be a good idea to use this result to build magnets devoid of Dy for EV applications.

    Related Post

    Most Popular

    Best Picks

    STM32WBA, 1st wireless Cortex-M33 for more powerful and more secure Bluetooth applications #STM32InnovationLive

    Author: STMicroelectronics Update, December 21, 2023 The STM32WBA52xx are now available in a QFN32 package measuring only 5 mm x 5 mm as opposed to the...

    2024 Insights: Dr. Abhilasha Gaur on Skilling’s Impact in...

    In an exclusive interview, Dr Abhilasha Gaur, COO of the Electronics Sector Skills Council of India (ESSCI), sheds light on how skilling processes will...

    Simulation Tool Prevents Severe Issues in Various Automotive Scenarios

    Authors: Giusy Gambino, Alessio Brighina, Francesco Giuffre’, Filippo Scrimizzi, STMicroelectronics, Catania, Italy When conceiving and implementing cutting-edge solutions that can thrive in harsh automotive environments a...

    SensorTile.box PRO, a new story about a professional board...

    Author: STMicroelectronics  The SensorTile.box PRO redefines what it means to use professional tools destined for the Internet of Things by making the technology accessible to more than...

    STM32CubeMonitor 1.7, STM32CubeMonitor-UCPD 1.3, and STM32CubeMonitor-RF 2.12, more powerful...

    Author: STMicroelectronics STM32CubeMonitor 1.7 became more flexible thanks to new UI improvements in an effort to adapt to the many use cases it must handle. For...

    Driving the Future: Exploring Innovations in the Automotive Power...

    The global automotive power electronics market is set to achieve a valuation of US$ 6 billion by 2033, advancing at 4.1% CAGR from 2023 to 2033, as...

    Empowering Karnataka’s Electronics Industry: An Insightful Conversation with CLIK...

    Karnataka, a shining star in India's technological landscape, has earned international acclaim for its thriving electronics and IT sectors. Fuelled by a legacy of...

    Aimil Ltd.: Setting the Benchmark for Instrumentation Solutions at...

    Aimil Ltd., an ISO 9001:2015 certified company with a heritage tracing back to 1932, holds a prominent position as a leading provider of cutting-edge...

    Electrify Your Future: A Thriving Career in the E-Mobility...

    In an era where sustainability and innovation reign supreme, the E-Mobility sector has emerged as the driving force behind a transformative shift in the...

    Must Read